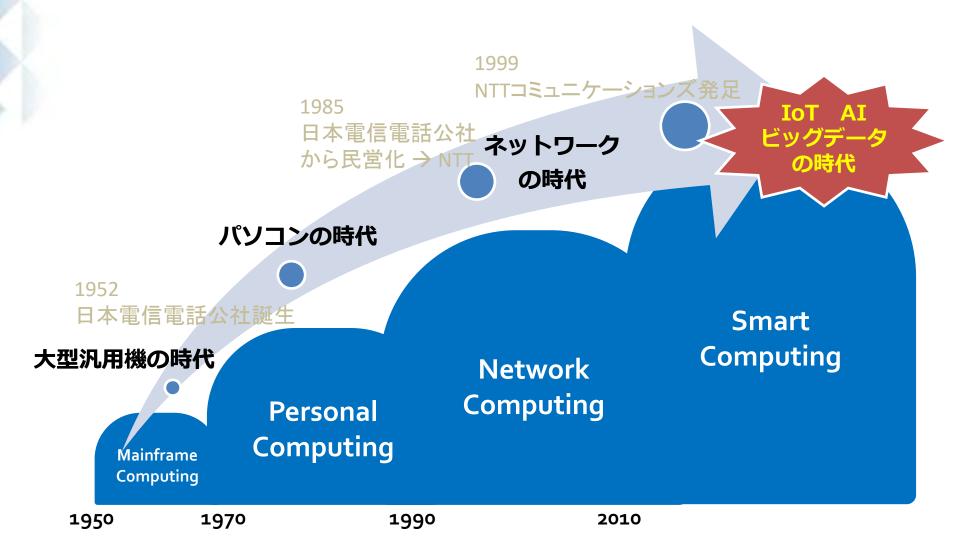


Transform, Transcend.

IoTの利用ニーズと普及に向けた課題

~サイバーセキュリティと安心安全のためのAI活用事例~

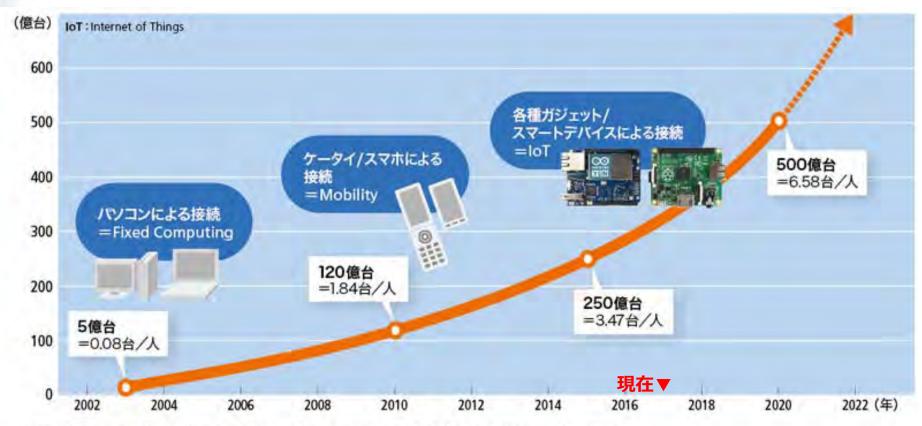
NTTコミュニケーションズ株式会社 技術開発部 IoTクラウド戦略ユニット 経営企画部 IoT推進室 兼務 IoT・エバンジェリスト 境野 哲 akira.sakaino@ntt.com


Transform your business, transcend expectations with our technologically advanced solutions.

本日の講演内容

- 1. IoT普及の背景と産業界のニーズ
- 2. IoTの普及に向けた課題
- 3. セキュアなIoTを実現する仕組み
- 4. IoTとAIの活用事例
- 5. 今後の取組に向けて

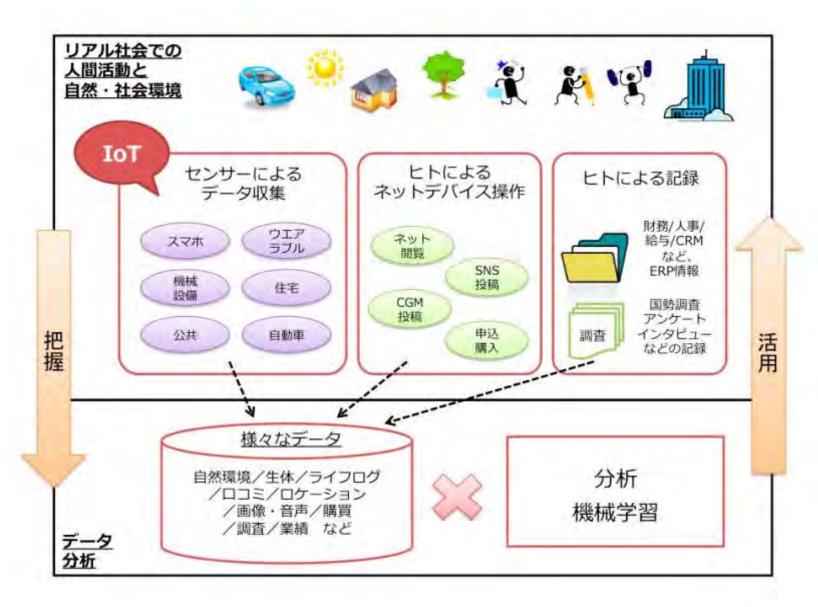
IoT普及の背景 ~計算機の高性能化~


端末でも サーバーでも 高度な解析処理が可能に

IoT普及の背景 ~国際通信網とクラウドの普及~

- グローバル通信ネットワークの普及
 - ✓ カバレッジの拡大・低価格化
 - ✓ 国際ローミングの普及
- ・ 通信モジュールの価格低廉化
 - ✓ この数年で5分の1に
- ・ <u>クラウド型サービスの普及</u>
 - ✓ 導入コスト低減
 - ✓ 開発期間の短期化

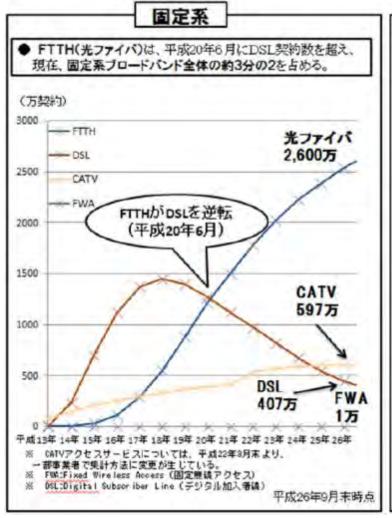
高度なICTが いつでも どこでも すぐ 安く使える時代に

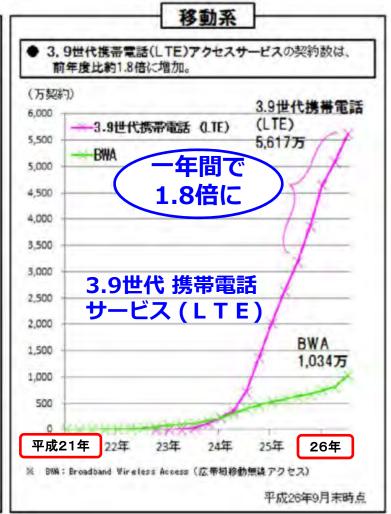

IoT でつながるモノは 世界に数百億台

出典:日経テクノロジー Online

http://itpro.nikkeibp.co.jp/atcl/column/15/031300046/031300001/

IoTデータの利用価値に 期待が集まる


出典:ビッグデータマガジン http://bdm.change-jp.com/?p=1677


IoTの世界は数年前に予想されていた

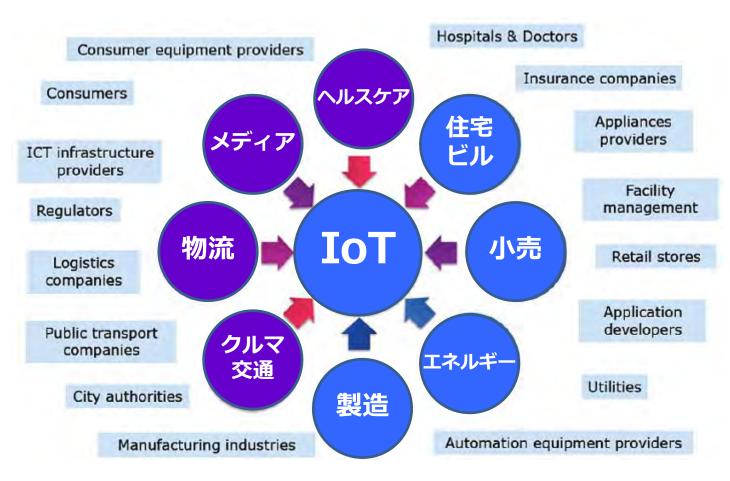
出典 :総務 省 電波 政策懇談 会報告書 (平成二十一 年 七 月 を もとに編集

そして 実際に 高速モバイルが普及した

出典:総務省 電波政策ビジョン懇談会 最終報告書 2014年12月

スマートデバイスが 続々登場

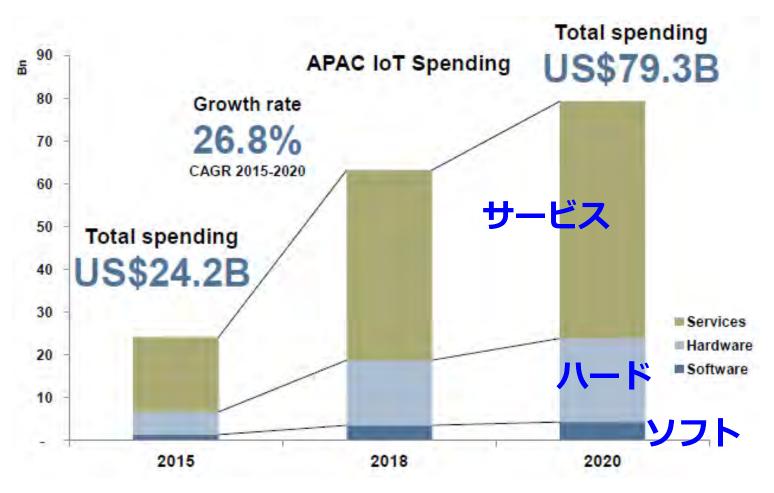
機能付与型(人の活動、能力を支援)



モニタリング型(人や動物の生体・環境・位置をモニター)

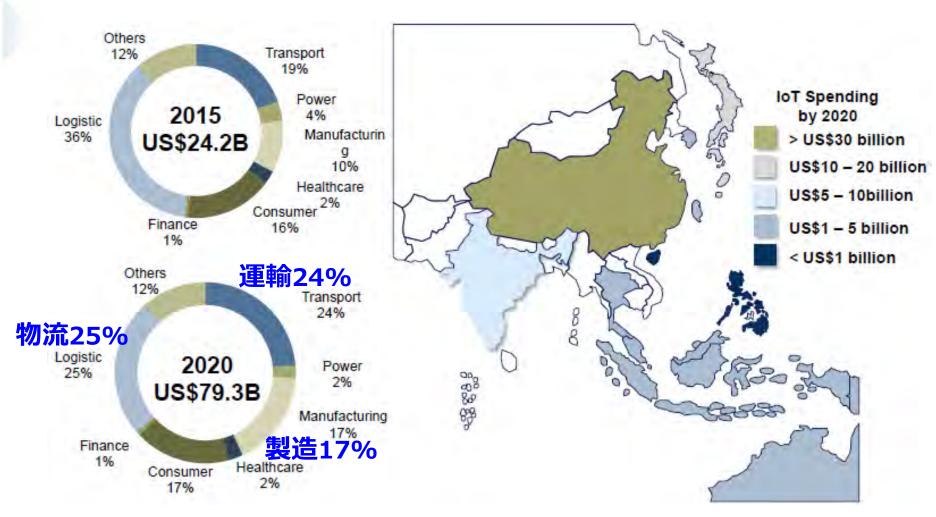
出典:総務省 電波政策ビジョン懇談会 最終報告書 2014年12月 をもとに編集

IoTの市場とプレイヤー


~ あらゆる産業分野でIoTの活用が進む ~

出所: http://iot.ieee.org/images/files/pdf/IEEE_IoT_Towards_Definition_Internet_of_Things_Revision1_27MAY15.pdf

参考)IoTの市場予測(アジア地域)


~ 5年間で3倍 800億ドル規模に ~

出所: 2016.10.27 FROST&SULLIVAN社「スマートエンジニアリングTOKYO」セミナー資料

参考)市場予測の内訳

~ 中国 日本 インド が 三大市場 ~

出所: 2016.10.27 FROST&SULLIVAN社「スマートエンジニアリングTOKYO」セミナー資料

IoTで解決したい課題の例 1/2

接続するモノ

課題

解決に向けた打ち手

運輸

貨物の品質管理

輸送状態の遠隔監視による品質維持(温度管理等)

トレーサビリティ

省エネ

• <u>位置情報監視</u>による紛失/盗難防止・管理コスト削減

• 走行データ分析で燃費効率化/危険運転防止

工場・工作機械・倉庫

故障の早期発見

●機械・設備の異常検知から突発的な操業停止 などを未然に防止し影響を極小化。

生産性の向上

複数拠点の機械・設備の稼働状態を一元的に 可視化 し管理稼働を削減

製造計画の最適化

● リアルタイムな出荷数・販売数と連動した 在庫レスの製造計画の実現

鉄道・建機・農機

保守の効率化

• 建機・設備の**稼働状態監視**による予測保全

生産性の向上

盗難の防止

- 建設現場の<u>施工状況の可視化</u>による生産性向 上・コンプライアンス確保
- 位置情報監視による盗難防止/トレーサビリティ確保

IoTで解決したい課題の例 2/2

接続するモノ

課題

解決に向けた打ち手

昇降機・ビル・商業施設

生産性の向上

● 設備の<u>リモート保守</u>による人員稼働の削減

不審者の発見 追跡

防犯・防災

■ 監視画像の分析による不審者の早期発見/防犯

道路・橋・トンネル

経年劣化の検知

● 複数ビルの設備(昇降機等) 稼働状態可視化 により オンサイト対応の稼働削減・防災/防犯強化

● 設備のひずみ等の異常検知により予測保全

事故災害の防止

渋滞の緩和

気候や災害により変化した路面状態を<u>リアル</u><u>タイムに検知</u>することで事故防止

事故や渋滞の状態を<u>リアルタイムに検知</u>し 最適なルートをナビゲーション

介護・労働現場

高齢者の見守り

• 位置情報確認により安心/安全を確認

子どもの見守り

従業員の見守り

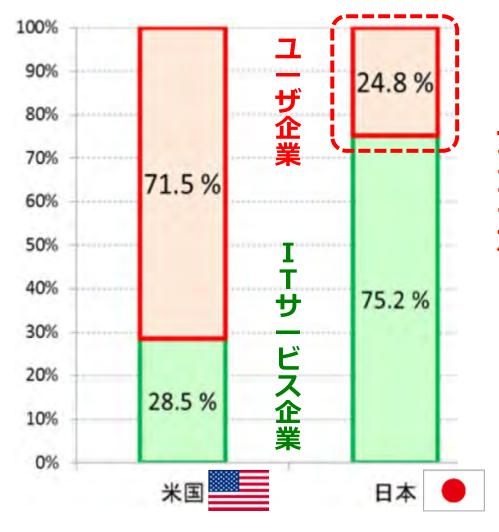
- 学校への登下校の状態を可視化 することで 安心/安全を確認
- 心拍数・脈拍などの<u>健康状態の可視化</u>により 適切に労務管理

IoT活用にあたっては 解決したい課題と目標の明確化 が大切

産業の競争力 付加価値 差異化の要素 が 変わった

20世紀の産業競争力 ~ヒト・モノ・カネ~	2 1 世紀の産業競争力 ~データ・ソフト・サービス~
熟練工による「巧みの技」	AI・ロボットで安価に高速大量生産
経験と勘によるカイゼン	データ解析による自動最適化
量産できる工場が希少価値	製品サービスのデザイン力が希少価値
八一ドの機能/性能で差異化	ソフト・サービスで差異化
社内業務プロセスの効率化	サプライチェーン全体の自動最適化
大企業に資金が集まる	優れたアイデア・技術に資金が集まる

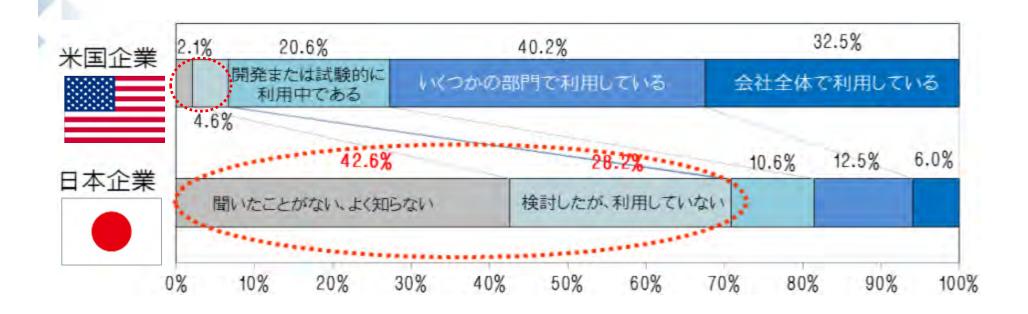
価値を生み出すスキル・求められる人材像 も 変化


IoT時代に必要なスキルとは

イノベーター/プロデューサー/サービス開発/エンジニア 人材

スキル項目	必要な能力
課題発見・コンサル	社会や企業の問題点を見つけ 独自の解決策を考える
ビジネスモデル考案	常識や慣習にとらわれず 業界を超えた新サービスを考える
ICT基盤デザイン	最新のハード/ソフト技術で新しいアーキテクチャを創る
データ解析・A I	数理統計や機械学習の技術を使って 社会課題を解決する
ITとOTの統合	制御系システムの特性を理解し ITネットワークにつなぐ
セキュリティ	制御系システムを含めて 人・モノ・データの安全を守る
UI/UX デザイン	ハード/ソフト/サービスのデザイン力で人を感動させる

~起業・発明・アーキテクト・デザイン の力 が 重要~


日本の産業界の現状 ~ユーザ企業にIT技術者が不足~

ユーザー企業の IT技術者育成・ IT業界との協業 が急務

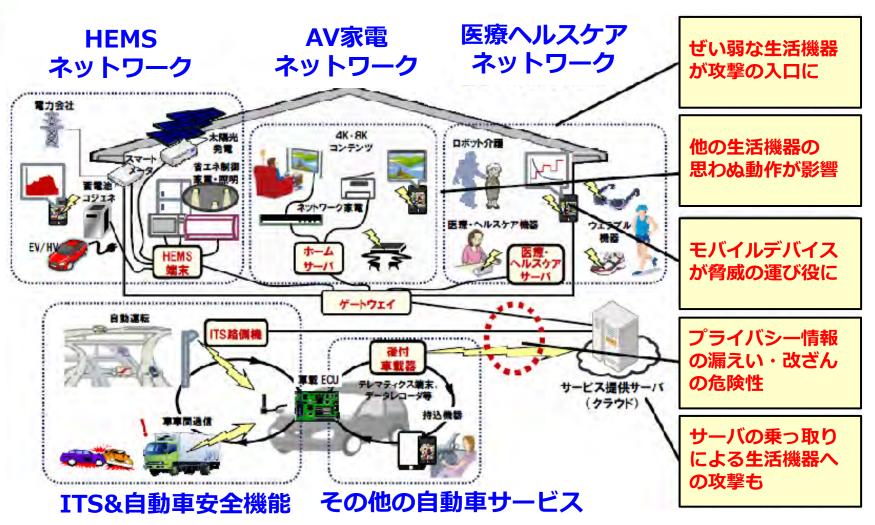
出典:経済産業省 2015年版ものづくり白書

日本の産業界の現状 ~IoT活用の取組が遅い~

日本は 欧米に比べて 取り組みに遅れ

出典:経済産業省 2015年版ものづくり白書

IoT導入にあたっての課題・懸念


~ 情報漏えいやサイバー攻撃への不安 が 1位 ~

出典)MM総研 IoT (Internet of Things) の国内市場規模調査

IoTのセキュリティ脅威

~ ネットワークやデバイスでつながる全てのモノが標的に ~

出所: CCDS「つながる I T社会の安心・安全の確保に向けて ~セキュアライフ2020~ 提言」2014

IoT普及の課題は「セキュリティ」

想定されるリスクの例	対策の方向性
管理者不在 のモノが つながり続ける	ユーザー管理方法を強化する
メーカーが想定しないモノとつながる	接続される機器を認識する
セキュリティホールのあるモノがつながる	ソフトウェアを自動更新する
モノがサイバー攻撃の踏み台にされる	自動的に通信を遮断する
機密データや個人情報が盗まれる	認証や暗号の方式を強化する
データ漏洩しても利用者が気づきにくい	異変を早期発見し自動通知する
ロボットや無人機が人や設備を破壊する	異常を自動検知し停止させる

IoTならでは の対策が求められる

NTTコムが提供するIoTソリューション

~セキュアなネットワークとクラウドで 安全 確実に データを収集 解析~

- ◇IP-VPN & クラウド をワンストップで提供
- ◇多様な用途・大量ユーザ・大量データ・グローバルに対応



Copyright © NTT Communications Corporation. All rights reserved.

産業用IoTにはプライベートクラウドの利用を推奨

パブリッククラウド

誰でもアクセスできるインターネットを活用

インターネット

セキュリティ対策は

セルフマネジメント

主にWebサーバ・開発環境向け

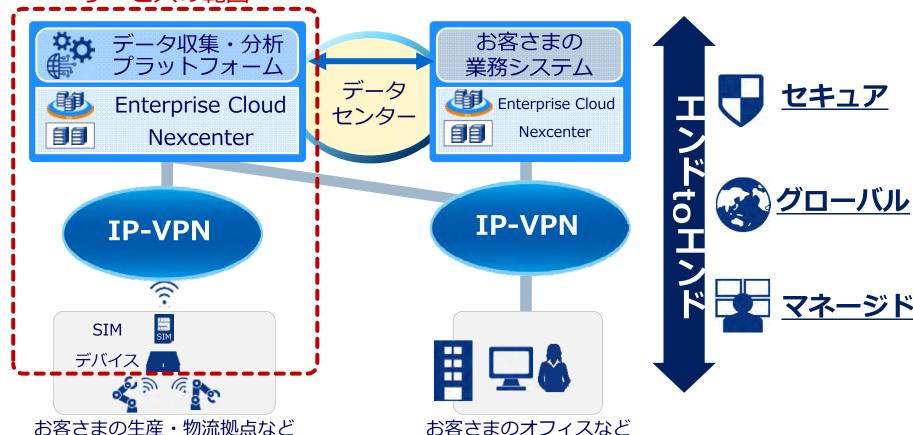
プライベートクラウド

セキュアな回線で直結する自社専用サーバー

インターネットに つながない _ ~~

IP-VPN

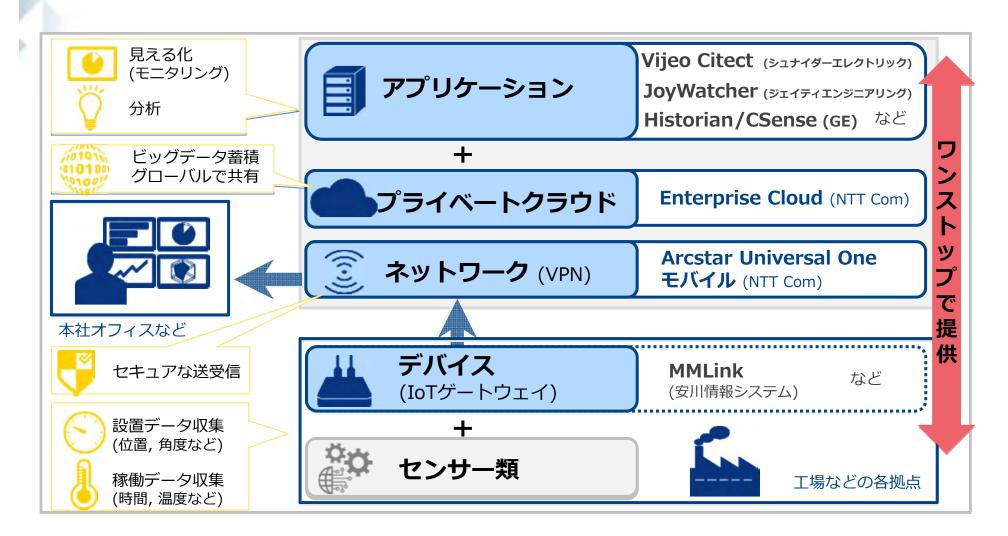
マネージドサービス



主に企業向け 基幹システム向け

IoTプラットフォームサービスを開発

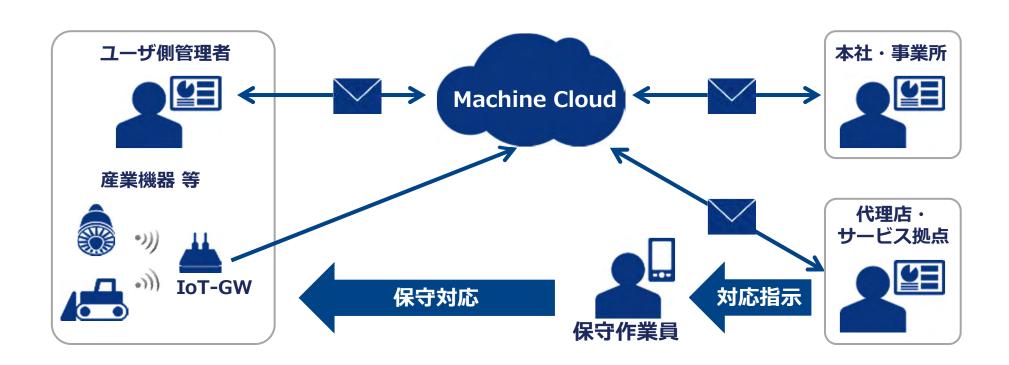
デバイスからデータ収集・分析までワンストップ提供


IoTプラットフォーム サービスの範囲

Copyright © NTT Communications Corporation. All rights reserved.

IoTプラットフォームの例 ~工場向けパッケージ~

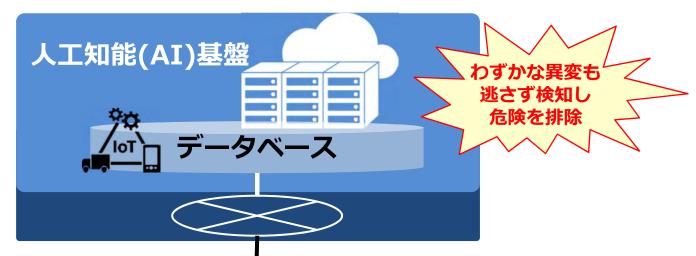
大切なデータを守るセキュアなネットワーク&クラウド環境



Copyright © NTT Communications Corporation. All rights reserved.

25

IoTプラットフォーム 「Machine Cloud」


- ✓ 産業機器等の稼動状況を グローバルに遠隔監視
- ✓ 異常発生をアラーム通知し 保守を迅速化・効率化
- ✓ 収集データを代理店などと共有し サービス向上

Copyright © NTT Communications Corporation. All rights reserved.

今後の取組人工知能(AI)を活用したIoTサービス

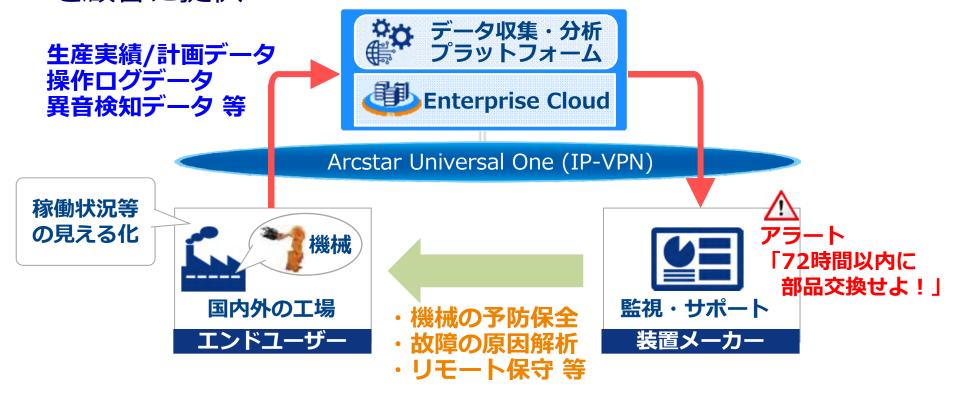
IoTデータを学習&分析し 「正常」と「異常」を自動で判別 ⇒ ヒト と モノ の 安心・安全を守る

ネットワークにつながる あらゆるモノ

Copyright © NTT Communications Corporation. All rights reserved.

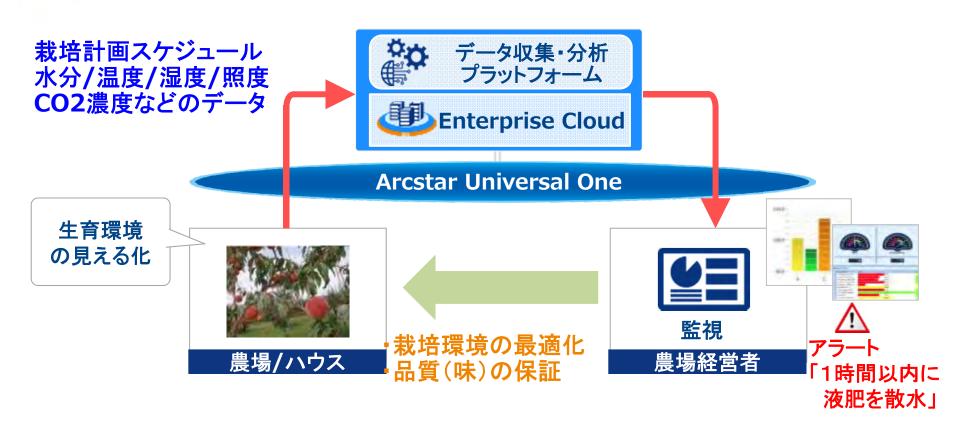
IoTデータの特徴

① 時系列性 時間変化するデータに隠された意味を探す


②マルチモーダル性 複数種類のデータを組み合わせて意味を見つける

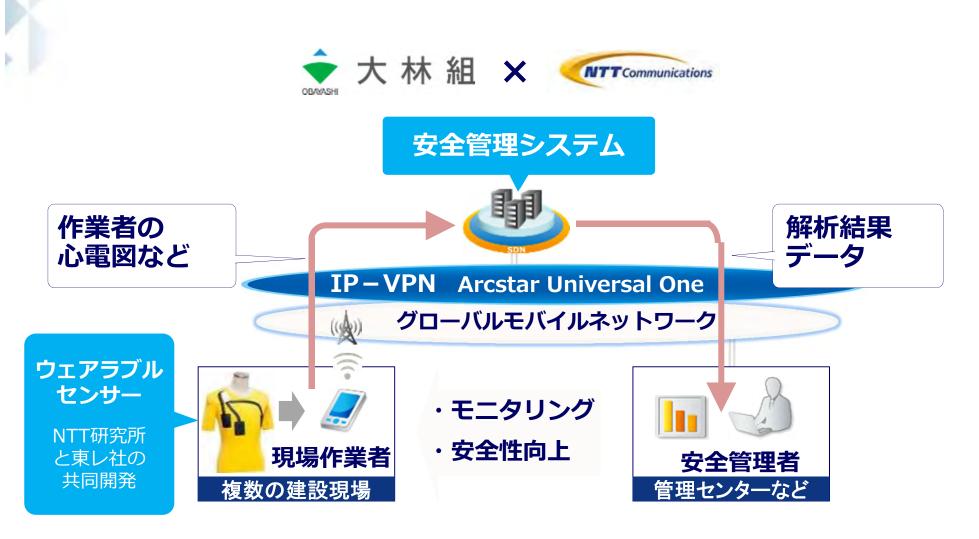
時系列&マルチモーダル Deep Learningでいつもと違う 振る舞い を検知

AI活用例1:製造機械のリモート保守


- ・某製造機械メーカーが、ユーザー(世界中の工場)に納品した 自社製品の使用状況を 自社から遠隔で監視・分析
- ・<u>予防保全</u>や<u>リモートメンテナンス</u>等の新たな付加価値サービス を顧客に提供

将来は「故障しないマシン」のレンタルサービスへ進化も

AI活用例2:果樹の生産効率&品質向上


- ・各ハウス内の状況を遠隔で監視し 生育を管理・予測
- 生育に合わせて環境を最適化し収穫量と品質を向上

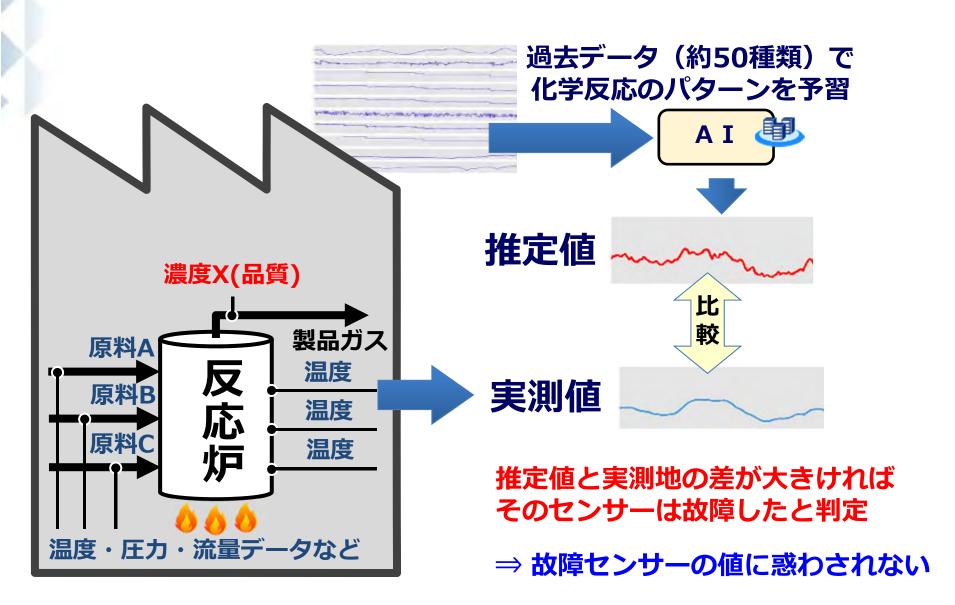
将来は オンディマンド生産できる「自律制御 植物工場」へ進化も

AI活用例3:作業員の安全管理

ウェアラブルセンサーで作業者の生体情報をモニタリング

AI活用例4:不審者/不正行為の自動検知

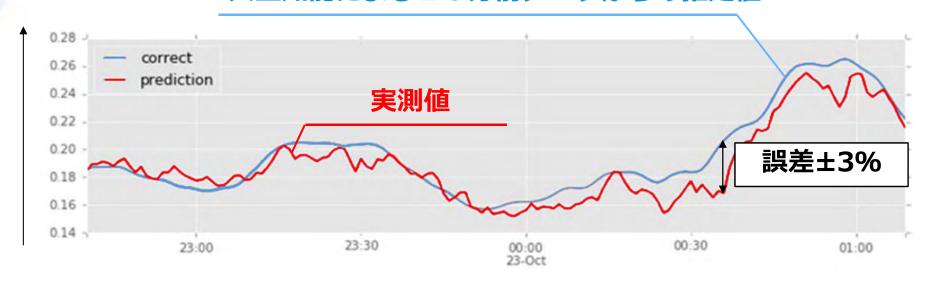
(1)学習用映像(各動作ごとに500動作)を準備


(3)解析対象の映像

監視力メラ映像から 特定の挙動を見つけて検出できる

AI活用例 5 工場の事故/不良品発生を防ぐ

~ 異常値の原因が 反応の異常か センサーの故障か見分ける~



Copyright @ NTT Communications Corporation. All rights reserved.

製品の品質を予測し 不良品発生を防ぐ

濃度X

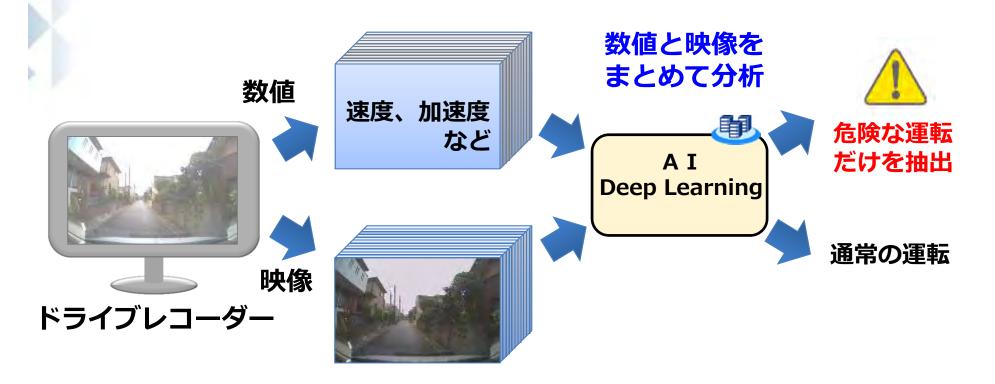
人工知能による20分前データからの推定値

Deep Learningで20分後の品質を誤差±3%で予測

※測定器の誤差が±2%

異常発生を予測し、事前に手を打つことが可能に

AI活用例6 社用車の交通事故を減らす

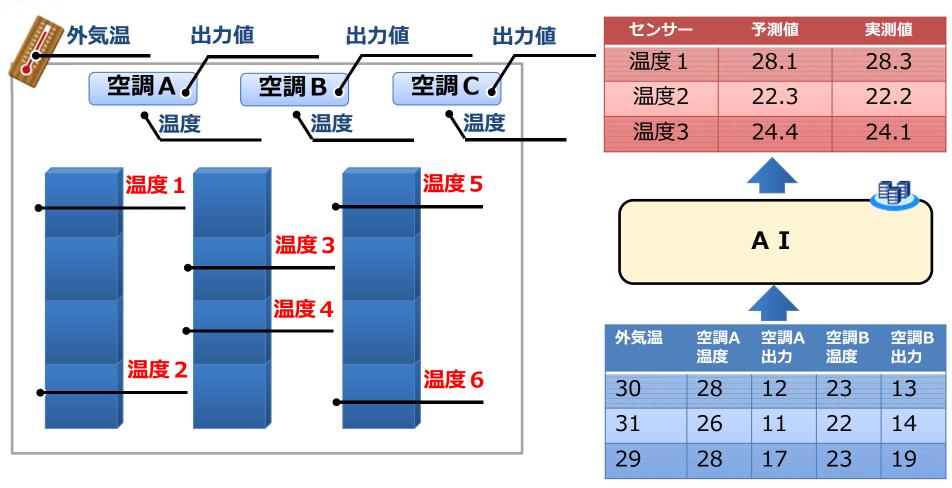

~ ヒヤリハット(危険運転)を自動検知 ~

従来の方法 = ドライブレコーダーの情報を人が目視チェック

目視に時間がかかり、ごく一部しか確認できない…

AIで 危険運転シーンを自動抽出し 安全運転を指導

自転車の飛び出しシーンなどを高精度に抽出 (精度85%)



全データをラクラク検査

AI活用例7 データセンターの空調電力削減

過去データ(空調出力と温度)から 熱の伝播速度を自動学習

- ⇒ 30分後の温度を正確に予測(平均誤差± 0.16℃)
 - ⇒ 冷やしすぎを防いで 電力コスト削減に成功

今後の展開

①対応するデータ種別の拡大

様々なセンサー、音、テキストなど

②バッチ処理からリアルタイム処理へ

高速/高品質なネットワーク、エッジコンピューティングとの連携

③検知▶予知▶制御(最適化)

様々な問題の発生を予知し、自動で回避/最適化するAIを実現

IoTやAIの活用分野は広い

国際社会が直面するさまざまな問題の解決に ICTを活用

直面する問題	解決の方向	IoT/AI活用例
地球温暖化	再生可能エネルギーシフト (太陽光・風力・水力…)	電力需給変動に追従する 高速デマンドレスポンス
気候変動 (洪水 干ばつ 山火事)	災害の検知・予測の早期化 避難誘導/移住計画の最適化	降水・日照・作柄の予測 避難のシミュレーション
水・食糧の不足	省資源型の作物/家畜へ回帰 救援物資配給計画の最適化	地球規模の作付け計画 栽培 配送コストの最適化
鉱物の採掘量減少	歩留り改善(廃棄品削減) リサイクル率アップ	製造プロセスの常時監視 トレーサビリティ向上
貧困・格差・テロ	教育の普及、人材の育成 所得/雇用の再分配	eラーニング(青空教室) 不審者の検知 捜索 検挙
経済成長の終焉 少子高齢化	マイナス成長型の社会制度高齢者の就労/労働支援	仕事 人材 モノのシェア 病気/ケガ予防、頭脳支援 産業の維持・効率化

巨視的 長期的視点で IoT/AIの有益な使い方を考えたい

最後に IoTに取り組むための心構え

~ 組織・会社・業界・国境の壁を越えて 協力連携しましょう ~

- 1. 事故が必ず起きると考える(早期復旧の対策を)
- **2. スピード優先**(検討 より 実践 を)
- 3. IT部門と現場部門の連携(対立せず全社最適をめざす)
- 4. 責任と権限を明確に(担当役員を決めて関係部と連携)
- 5. 自前主義を捨てる(優れた技術を買って使う)
- 6. 機器ベンダーとの協力(安全なモノを調達する)
- 7. SIベンダーとの協力(安全に運用保守する)
- 8. 通信事業者との協力(ネットワークを安全に使う)
- 9. 欧米の先進企業に学ぶ(新しい技術・規格を取り込む)

ご清聴ありがとうございました。

IoTを活用したビジネスを推進していく協業パートナー企業を募集しています。

本セミナーの内容に興味を持たれた方、 実証実験への参加などをご希望の方は、 いつでもお気軽にご連絡くださいませ。

akira.sakaino@ntt.com