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<Summary> To achieve accurate and robust detection of fetal heads in US (ultrasound) images, this paper proposes a 

method that integrates a voting scheme and an improved iterative randomized Hough transform (IRHT) method. First, a 

skeleton image is extracted from the input US image by pre-processes. Next, the voting scheme, which applies the 

improved IRHT method to detect ellipses from the skeleton image, is repeated P times, in each of which, if the 

difference between each detected ellipse’s parameter values and each parameter values saved in the list is small, the 

accumulator of the nearest values in the list is incremented by one (voting); otherwise, the detected parameter values are 

appended to the list. Finally, the ellipse with the most voted values in the list is outputted as the final detection result. As 

a result of experiments that use 30 US images captured under different conditions, it turns out that the proposed method 

achieves a very high ellipse detection rate of 94.97%, which is much higher than IRHT and improved IRHT. In addition, 

some parameters concerning the proposed method such as the optimal value for P are experimentally explored. 
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1. Introduction 

In recent years, thanks to safety, low cost and 

noninvasiveness, ultrasound (US) images are frequently 

applied in prenatal clinic examination for fetal growth 

evaluation1), gestational age estimation2), and fetal weight 

estimation3), etc. To evaluate fetal growth, head 

circumference (HC) is one of the important biometric 

measurements. However, due to the discontinuity and 

irregularity of fetal head skulls, low resolution and 

signal-to-noise ratio of US images, the procedure of fetal 

head detection could be experience-dependent on and time 

consuming for medical doctors. 

To solve the above-mentioned problem, a number of 

automatic or semi-automatic methods have been developed 

for ensuring a better effective, accurate and consistent (not 

medical-doctor-dependent) HC measurement. Randomized 

Hough Transform (RHT)4), Random Sample Consensus 

(RANSAC)5), Iterative Randomized Hough Transform 

(IRHT)6) are typical techniques for fetal head measurement 

by ellipse detection, but they may fail when strong noises 

corrupt the peaks in the parameter spaces, which results in 

inaccurate measurements. Though some learning based 

methods7,8) are proposed to detect fetal heads for a better 

performance by introducing learning architectures, they 

often applied IRHT or Hough Transform for ellipse 

detection and inevitably lead to the same problems of those 

methods. In addition, the authors have proposed an 

improved IRHT method9) for achieving more robust and 

accurate results by introducing the number (N) of pixels on 

the ellipse, but it can achieve only unsatisfying detection 

rates due to noise curves that consist of quite many pixels. 

In order to achieve consistent measurements and high 

detection rates despite the presence of noise curves, we 

propose an effective voting scheme (known as “bagging”10))  

based on the improved IRHT method9) for detecting fetal 

heads in US images contaminated by strong noises. First, 

pre-processes extract a skeleton image from the input US 

image. Next, the improved IRHT method detects ellipses 

from the skeleton image, which is repeated P times. 

Meanwhile, an ellipse list is created and a voting for each 

detected result saved in the ellipse list is executed. Finally, 

the peak (with the most votes) in the ellipse list is outputted 

as the final detection result. 

Section 2 explains the proposed algorithm, section 3 

presents experimental results and discussions, section 4 

concludes this paper. 



 

 

2. Algorithm 

2.1 Overview 

Figure 1 illustrates the proposed method, which exploits 

a voting scheme based on the improved IRHT9). First, a 

skeleton image is extracted from the input US image by 

pre-processes (section 2.2). Next, the voting scheme (section 

2.4) is carried out as follows. The improved IRHT method is 

applied to detect ellipses from the skeleton image (section 

2.3).  This process is repeated P times, in each of which, if 

the difference between each detected ellipse’s parameter 

values and each parameter values saved in the list is small, 

the accumulator of the nearest values in the list is 

incremented by one (voting); otherwise, the detected 

parameter values are appended to the list. Finally, the peak 

(with the most votes) in the list is outputted as the final 

ellipse detection result. 

2.2 Pre-processes 

For detecting the fetal head in the US image, the 

skeletons of the fetal head skull should be extracted as (a) 

bright region(s) by pre-processes. Since speckle noise is 

often superimposed into US images, a bilateral filter11) with 

a 5×5 window is utilized to reduce the speckle noise and 

preserve the edge, where the standard deviations both in the 

color space and coordinate space are set to 50 in the 

experiments.  Subsequently, a white top-hat transform in 

mathematical morphology is operated to increase the 

contrast with an 11×11 window. 

After that, the K-means clustering algorithm12) is applied 

to distinguish the bright region(s) from the other regions in 

the fetal US image. The mean value �� and the standard 

deviation �� �� � 1, … , ��  of cluster (region) i can be 

calculated from the segmentation results.  The class 

number of K-means is three, because US images of the fetal 

head are segmented into three components: head skull, soft 

tissue, and background.  Since the K-means method is 

sensitive to noise, the bright region(s) obtained from the 

segmentation results could be corrupted by much noise. 

When we extract the skulls’ skeletons as the input to the 

original or improved IRHT method, we should be able to 

suppress the noise included in the skeletons. 

In order to suppress the noise impact present in the 

K-means method, a global thresholding is used to convert 

the intensity image into a binary image; then, the bright 

region(s) can be extracted from the background by a 

threshold value T. The following threshold value T obtained 

by preliminary experimental studies, is adopted to extract (a)  

 

Fig. 1  Overview of the proposed method 

 

bright region(s), 

  � �� � 0.75 � �� (1)

where �� is the mean value of the bright region, �� is the 

standard deviation of the bright region (Here, we suppose 

the bright region is classified into b-th cluster). In Eq. (1), 

“0.75” is the threshold for extracting only bones from three 

classes (bone, soft tissue, background). In addition, it is 

experimentally determined by our previous work9).  

As for binary image, a binary morphologic opening 

operation with a 2×2 window is used to remove some small 

bright regions. Morphologic dilation with a 1×1 window and 

closure with a 2×2 window are used to smooth the 

boundaries of the large bright regions. After the 

pre-processing, the skeletons of the bright region are 

extracted by distance transform13). 

Figure 2 (a)~(g) shows examples of the procedure of the 

pre-processing and skeletonization in US images. In which 

(a) :original fetal US image, (b): result of applying a bilateral 

filter to image (a), (c): result of applying a white top-hat 

transform to image (b), (d): segmentation result of applying 

the K-means clustering method to image (c), (e): result of 

applying a global thresholding with a threshold value T 

defined in Eq. (1) to image (d), (f): skeletons of the bright 

region extracted by applying distance transform to image (e), 

and (g): the original image is superimposed by the detection 

result for image(f), are shown based on the description in 

sections 2.3 and 2.4. 

2.3 Improved iterative randomized Hough transform 

In US images, fetal head skulls often appear as the bright 

region with some discontinuities, because fetal head skulls 

are not completely closed. In addition, some other structures 



 

 

 

 

(a) 

 

(b) 

 

(c) (d) 

 

(e) 

 

(f) 

 

(g) 

 

Fig. 2 Examples of the results by pre-processes and skeletonization 

also may generate bright spots in US images. Furthermore, 

various artifacts and noise are usually present in US images. 

Accordingly, a useful head detection algorithm must 

effectively deal with these problems. To solve these 

problems, the authors developed an improved IRHT 

method9) for detecting ellipses in US images despite the 

large discontinuities and strong noise for achieving more 

robust and accurate results, where the improved IRHT 

method is based on the original IRHT method6). In the 

following, the original and improved IRHT algorithms are 

overviewed. 

2.3.1 Iterative randomized Hough transform 

In a binary image, the curve to be detected can be 

modeled by ���, �� = 0 , where � = [��, … ,��]� 

comprises n-dimensional parameters, � = (�, 	) represents 

the coordinates of pixels on the curve. The RHT method4) 

first randomly takes a sample of n pixels, �� = ��� , 	��, 
 =

1, … ,�, and maps this sample into one point � ∈ �� in the 

n-D parameter space by solving a set of n-equations 

���, ��� = 0. If c is valid for (fits to) an ellipse, the counter 

at c is increased by one in the parameter space and stored in 

its corresponding accumulator. This process is repeated until 

a predefined number of valid samples (K) are processed. The 

location of the counter peak in the accumulators is outputted 

as the final detection result. For ellipse detection (� = 5), 

the following equation is utilized13, 14) : 

 x� + 	� − ��� − 	�� − �2�	 − �� − �	 − �

= 0 
(2)

where the five parameters, [,�,�, �,�]�, can be converted 

into the standard ellipse parameters � = [��,	�, �, �,�]�: 

(��, 	�) are the coordinates of the center of the ellipse, a 

and b are its major and minor semi-axes, and � is the angle 

of rotation, then the ellipse eccentricity is given by � = �/�. 

The IRHT method employs a randomized Hough 

transform (RHT) to a region of interest (ROI) in the image 

space by iterative parameter adjustment and reciprocal use 

of the image space and parameter space. The region of 

interest of RHT method is always the whole image, and it 

does not change during the whole process. However, the 

region of interest of the IRHT method is updated based on 

the latest estimates of the parameters during the iteration 

process, where the ROI is a little bit larger than the rectangle 

that circumscribes the latest ellipse. Note that IRHT tends to 

be trapped by non-fetal head, but ellipse-like objects, even if 

K is increased. Meanwhile, noise pixels are gradually 

excluded from the region of interest, and the estimation 

progressively gets accurate. 

2.3.2 Improved iterative randomized Hough transform 

On the basis of the principle of the IRHT method, we 

further introduce the number (N) of bright pixels on the 

detected ellipse as a goodness of the detected ellipse, 

because as shown in Fig. 2, the fetal head skull consists of 

many bright pixels In each iteration, K valid samples are 

detected by RHT method, and top-M peaks (Herein, M is 

experimentally selected to be ten) in the accumulators of the 

K valid samples are selected. Then, the number of pixels on 

the ellipse is calculated for the selected top-M peaks. 

Subsequently, the result with the maximal number of pixels 

on the ellipse is accepted as the result in each iteration, and 

used to update the region of interest for the next iteration. 

This iterative process continues until the size difference of 

the ROI between successive two iterations is very small, and 

the detected ellipse in the final iteration is the final result. 

Herein, the convergence conditions which is the same 

conditions used by IRHT method are: less than 2.5° in �; 

less than 2 pixels in each of ��, 	�,� and �; and less than 6 

pixels total in ��,	�, � and �9).  

2.4 Voting scheme 

As shown in Fig. 3, the method proposed in this paper is 

based on the improved IRHT method. The original IRHT 

method uses random sampling of five points, but the random 

sampling does not always give accurate results. The 

improved IRHT method can make a better detection 

accuracy because of counting the number of pixels on the 

detected ellipse to reduce the impact of sparse noise pixels. 

However, it may fail when the skeleton image extracted 

from the input US image are occupied by some noise curves.  

Nevertheless, the curves of fetal head skull should be the 

most dominant components of the skeleton images,  



 

 

 

Fig. 3  Flow chart of the proposed method 

compared with the noise curves. Thus, misdetection of the 

skull curves by the improved IRHT method should occur at 

a small probability. By considering these, multiple attempts 

by a voting scheme should be able to further reduce the 

probability of the misdetection. 

Based on the results of P detections (� = 100 in this 

paper) by the improved IRHT method9), the proposed 

method makes a list for saving all the detected results and 

their accumulators. For each detection, a voting is made for 

the results in the list. More specifically, the difference 

between the current detection result and each of the results 

saved in the list is compared: i.e., if the difference is within a 

pre-defined small range, then the accumulator of that result 

in the list is incremented by 1; otherwise, the current 

detection result is appended to the list as a new one. This 

process is repeated by P times. Consequently, the final result 

is determined by detecting the highest peak (with the most 

votes) in the accumulators from the list. 

As mentioned earlier, Improved-IRHT reflects not only 

the count peaks in the accumulators (section 2.3.1) , but also 

the number of bright pixels; therefore, the ROI could be 

placed at different places in the image so that the fetal head 

can be detected at a high probability.   

3. Experiments 

US images containing fetal heads at about 20-32 weeks' 

gestational age are used for the experiments, where the US 

images are consolidated impossible anonymous. To heighten 

the performance of the algorithm, a priori information, 

reported by Hadlock et al. 2) is applied to the experiments: 

i.e., the eccentricity � = �/� of the human fetal head has a 

mean (��) of 0.783 and a standard deviation (��) of 0.044. It 

could be used to construct a constraint as �� − 3�� ≤ � ≤

�� + 3��, namely, 0.651 ≤ � ≤ 0.915, and about 99.7% 

of fetal heads would have an eccentricity in this range. 

Therefore, only the result whose parameter e is within this 

range is accepted. 

Although a strict convergence condition is used in the 

iterative process of the original and improved IRHT 

methods, as introduced in section 2.3.2, a relatively relaxed 

range is experimentally defined for the proposed voting 

scheme (the processing marked by a red doubly dotted line 

rectangle in Fig. 1) by less than 8.5° in �; less than 5 

pixels in each of �� and 	�; less than 6 pixels in each of 

� and �; and less than 19 pixels total in ��,	�, � and �. 

Namely, if the difference between the detected result and the 

ground truth made by experienced physicians is within such 

a relatively relaxed range, it is considered as a correct result; 

otherwise, it is a wrong result. 

In addition, the program of ellipse detection is 

performed by a CPU E3-1240 v3 @ 3.40GHz. Since any 

optimization has not been considered currently, the 

efficiency of the algorithm could be able to be improved by 

10-20 times based on parallel computation and GPGPU 

technology. 

3.1 Experiment on the effect of noise 

Two US images, each of which is contaminated by weak 

nose (Fig. 4 (a): Image 1) and strong noise (Fig. 4 (b): 

Image 2), respectively, are used to evaluate the original 

IRHT method6), the improved IRHT method (i-IRHT)9) and 

the proposed method. The original images and the binary 

images of Image 1 and Image 2 are shown in Fig. 4. “Noise” 

in the images is sidelobes or artifact, which often occurs in 

ultrasound images. In addition, we make the pre-processing 

to reduce the noise such as the placenta of pregnant women 

in the images for the detection of the head of the fetus. Note 

that the binary image of Image 2 shown in Fig. 4 includes 

more noise than that of Image 1. 

Each of the three methods is performed 50 times for each US 

image, and detection rate of each method in Table 1 is obtained. 

The detection rate is calculated by the number of correct detection 

results divided by the total number of the detections (i.e., 50 times). 

Figure 4 shows the images used in Table 1. 

In Table 1, a comparison of the results for the three 

methods is listed. We can observe that for Image 1 with 

weak noise, the three methods achieve high detection rates; 



 

 

in particular, the proposed method achieves the best rate of 

100%. However, for Image 2 with strong noise, only the 

proposed method can achieve a high detection rate of 92%, 

which is much higher than those of the other two methods. 

On the other hand, the result of the i-IRHT method is much 

better than that of the original IRHT method since the 

i-IRHT method considered the number of pixels on the 

ellipse. Consequently, the results in Table 1 indicate that the 

proposed method can achieve the best detection rate among 

the three methods, and a robust performance especially for 

images with strong noise. An example of the detection result 

is superimposed to the original image, as shown in Fig. 2 

(g). 

3.2 Experiment on different US images 

30 US images (some examples are shown in Fig. 5, 

which have variations in terms of noise, the discontinuity 

and irregularity of fetal head skulls are used to evaluate the 

three methods, where each method is performed 50 times for 

each image. 

In Table 2, the mean and standard deviation of the 

detection rates for the 30 US images are listed for each 

method. As written earlier, each of the three methods (IRHT, 

i-IRHT, Proposed method) is performed 50 times for each of 

the 30 US images (Table 2 etc.): that is, 1,500 performances 

by each method.  The average in Table 2 shows the 

percentage (in 1,500 trials) of the correct detection. The 

standard deviation shows variations in the detection rate for 

each of the 30 US images. Table 2 demonstrates that the 

proposed method achieves much higher detection rate than 

the other two methods. It also indicates that the standard 

deviation of the detection rate by the proposed method is 

much smaller than the other two. This emphasizes that the 

proposed method is robust against wide variations in the 

noise, which are often contained in US images, such as, 

speckle noise, electronic noise and thermal noise. Although 

this method has a high detection rate, it is not 100%, so it 

may slightly detect erroneously. Also, since the conventional 

method can detect with accuracy as high as 70% or more,  
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Fig.4  Images (original and binary) used in Table 1 

 

Table 1 Detection rate of each method on two images 

 IRHT i-IRHT Propose method 

Image 1 88% 94% 100% 

Image 2 30% 78% 92% 

there is also the possibility of detecting an ellipse accurately 

than this method. However, as a point of view of this 

method, it can be cited as much as possible to reduce as 

much as possible about 30% of false detections occurring in 

the conventional method. It can be said that there are few 

cases where the accuracy of the conventional method is 

good by the proposed method which reduces the uncertainty 

due to acquisition of random points as much as possible.  

The reason that the false case exists is that sometimes 

the detection accuracy of the conventional method IRHT is 

extremely low. Basically, the detection accuracy of IRHT is 

more than 70%, but some cases are close to 50%. Because 

the core of the i-IRHT and proposed methods are based on 

the conventional IRHT algorithm, the cases of extremely 

low detection accuracy by the conventional IRHT algorithm 

will result in false cases of the i-IRHT and proposed 

methods. On the other hand, the false case is very few for 

the i-IRHT and proposed methods based on the experiments.  

3.3 Experiment on the number (N) of pixels on ellipse 

As explained in section 2.3.2, since the proposed method 

and i-IRHT reflect the number of pixels on ellipses, Table 3 

compares the numbers of pixels on ellipses for different US 

images by IRHT, i-IRHT and the proposed method. Image 1 

to Image 30 in Table 3 are ultrasonic images collected by us. 

Figure 5 (a) to (e) correspond to Image 4, Image 5, Image 1, 

Image 2, and Image 3, respectively. From Table 3, it can be 

seen that the number of pixels on ellipse by the i-IRHT 

algorithm are larger than those by the IRHT algorithm for 

each image.  

 

(a) (b) 

 

(c) 
 

(d) (e) 

Fig. 5 Some examples of the used 30 US images 

Table 2 Mean and a standard d there is also the possibility of 

detecting an ellipse accurately  

IRHT i-IRHT Proposed method 

53.6%, 48.9% 76.5%, 30.36% 94.97%, 8.82% 

 



 

 

Table 3 Comparison of the number of pixels N on ellipse 

 IRHT i-IRHT Proposed method 

Image 1 99 204 208 

Image 2 90 205 203 

Image 3 48 160 166 

Image 4 96 158 156 

Image 5 103 199 202 

Image 6 24 189 191 

Image 7 131 296 297 

Image 8 130 210 214 

Image 9 151 235 239 

Image 10 67 194 189 

Image 11 146 207 217 

Image 12 95 150 155 

Image 13 54 112 148 

Image 14 98 153 165 

Image 15 126 110 109 

Image 16 152 270 269 

Image 17 92 182 187 

Image 18 37 166 169 

Image 19 161 201 193 

Image 20 101 157 159 

Image 21 95 137 137 

Image 22 103 227 232 

Image 23 139 201 199 

Image 24 136 226 244 

Image 25 46 141 161 

Image 26 87 139 158 

Image 27 159 176 235 

Image 28 102 197 182 

Image 29 99 172 162 

Image 30 82 122 121 

 

 

 

(a) IRHT (b) i-IRHT 

Fig. 6  Relationship between the skeleton image (black line) and 

the detected ellipse (red line) 

Figure 6 is an illustration for evaluating the accuracy of 

the detection ellipse. The illustration in Fig. 6 meets the 

ellipse parameter condition (described from the fifth line of 

the second paragraph of section 3). It can be said that the 

fetal ellipse is detected accurately if number of pixels N on 

the ellipse is larger: i.e. i-IRHT’s ellipse detection is more 

accurate.  

The numbers of pixels N on the ellipse of the proposed 

method is similar to those of the i-IRHT algorithm, because 

the i-IRHT algorithm is iteratively carried out by our 

proposed method. Thus, considering the results shown in 

section 3.2, we can find that the accuracy of the proposed 

method is the best one compared with the IRHT and i-IRHT 

algorithms, as shown in Table 3.  

3.4  Accuracy and efficiency 

In section 2.4, for the voting scheme of the proposed 

method, P, the number of iterations is selected to be 100. In 

order to choose the best value of P for balancing the 

accuracy and efficiency, we conduct experiments for which 

P values change. The mean ellipse detection rates for 

different P values are shown in blue dots in Figure 6, in 

which P values are 10, 30, 50, 70, 80, 90, 100, 110, 120,130, 

200, and 300.  

As shown in orange dots in Fig. 7, the detection time 

increases with the increase in P value. On the other hand, the 

detection rate also increases with the increase in P value, but 

if P is larger than 110, the detection rate is not improved any 

more. Meanwhile, there is a case in which a high value 

locally exceeds the randomness included in the proposed 

method, because the detection rate deviates greatly at P = 50 

(Fig. 7). 

Concerning the computation costs for the proposed 

method and conventional IRHT, the proposed method's 

computation time increased linearly due to the triple loops 

for P, K and M, while the conventional method is linear to K. 

Therefore, the proposed method is worse in terms of the 

computational cost, but in practice, if the proposed method 

is implemented in CPU E3-1240 v3 @ 3.40GHz, the 

computation time is only several seconds. 

Basically, the loop number P used by this method 

decides the accuracy of the ellipse detection, but actually the 

best detection rate of about 95% can be obtained when the P 

value is around 100.  

On the other hand, images with low detection rates also 

exist. As shown in Fig. 8 (a), sometimes accurate detection 

cannot be performed if the whole fetal head is not covered 

by the ultrasonic probe. This is because it is impossible to 

take the whole appearance of the ellipse and the tissue 

existing inside the ellipse is mis-detected as the head. Also, 

with regard to Fig. 8 (b), the lower right part of the ellipse is 

detected widely due to the problem of the incident angle of 



 

 

the probe. Therefore, when realizing the white top hat in the 

pre-processes, it is difficult to detect the correct ellipse, 

because important features are lost. In fact, when applying 

the proposed algorithm, it is assumed that the head region is 

accurately detected by the doctor; so we think that such 

cases can be tolerated for our application. Regarding Fig. 8 

(c), it is possible to detect an ellipse exactly, but as far as we 

see, specific obtained parameters do not satisfy the 

above-mentioned conditions for the five parameters.  

More specifically it does not satisfy the condition. 

Concerning ϕ, if the ellipse is close to a circle, ϕ tends to 

change drastically. In practice this is not a problem, but to 

evaluate the detection accuracy, we need to develop another 

condition. 

Fig. 7 Relationship between p values, accuracy (detection rate) 

and efficiency (detection time) 

 

(a-1) original 

 

(b-1) original (c-1) original 

 

(a-2) skeleton 

 

(b-2) skeleton (c-2) skeleton 

 

(a-3) detected ellipse 

 

(b-3) detected ellipse (c-3) detected ellipse 

Fig. 8 Examples of difficult-to-detect images 

3.5  Parameter evaluation in calculating the detection 

rate 

In this section, it is assumed that the ellipse parameter 

condition is same as section 3.4. Although a certain number 

of ellipses can be accurately determined by this parameter, 

there are cases where accurate determination cannot be 

made for a small number of ellipses such as Fig. 8 (c). In 

order to accurately determine such an ellipse, it was also 

evaluated which parameters in the standard ellipse 

parameters � � ���, ��, �, 	, 
� most affect. First, the mean 

squared error (MSE) of each parameter for P=100 by this 

method is calculated by Eq. (3). 

 

MSE�c� � 1
n���� � ���

�

���

 

 

(3)

where c is the ground truth. The MSE calculation results for 

the five parameters are shown in Table 4.  

From Table 4, it is found that the parameter that is most 

likely different from the ground truth is �. The second is a, 

while the other parameters are not very different: that is, the 

detection accuracy of the center coordinates and the short 

axis are high. Artifact is the main reason why differences are 

prone to occur in the long axis a. In many cases, the outline 

of the bone is lost by artifact at both ends of the long axis of 

the fetal head ellipse. The angle �  is also affected by 

uncertainty due to the defective part of the major axis.  In 

the future, we study how � and a are adapted to different 

images. 

Furthermore, we compare this method’s average MSE 

with the conventional method (IRHT, i-IRHT). The average 

MSE of the standard ellipse parameters � �
���, ��, �, 	, �
� is calculated for each method and is shown 

in Table 5, where the average MSE is calculated as the 

average of the differences between the ground truth and 

estimation of each of the five ellipse parameters. 

From Table 5, it is found that the proposed method gives 

the best MSE value of 3.853. 

The case in which the proposed method’s detection 

accuracy is worse than that of IRHT, though it is very rare, 

happens when IRHT’s accuracy is very low. Since the 

proposed method is based on IRHT, the proposed method’s 

accuracy is also low in such case. In contrast, when the 

proposed method’s accuracy is very high, it is better than 

that of IRHT. 
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Table 4 Mean square error of the ellipse parameter 

 a b x� y� � 

Image 1 7.43 0.78 5.73 0.74 18.49 

Image 2 3.11 1.37 7.06 1.82 38.27 

Image 3 2.14 0.36 2.94 0.69 11.89 

Image 4 13.2 0.51 1.35 0.10 5.70 

Image 5 2.07 1.83 1.21 0.66 2.04 

Image 6 62.16 3.71 10.9 3.21 4.00 

Image 7 11.64 8.29 8.38 4.38 11.43 

Image 8 11.18 0.21 2.82 0.41 0.82 

Image 9 4.91 0.61 2.37 1.25 5.62 

Image 10 1.04 2.16 0.96 0.64 0.23 

Image 11 36.83 1.19 21.2 3.33 6.60 

Image 12 1.89 0.59 1.88 0.41 6.53 

Image 13 4.51 0.67 2.17 0.17 1.80 

Image 14 2.16 1.00 2.67 1.33 162 

Image 15 3.67 26.45 2.64 25.17 24.44 

Image 16 35.86 0.83 3.01 0.21 8.53 

Image 17 4.84 0.64 0.98 0.16 0.84 

Image 18 0.5 1.24 1.51 0.72 17.35 

Image 19 2.86 2.29 1.04 1.25 20.3 

Image 20 1.76 0.96 0,95 0.93 2.87 

Image 21 8.53 9.83 5.01 7.73 8.44 

Image 22 6.6 1.54 2.18 0.89 4.66 

Image 23 12.7 1.27 3.01 1.23 61.80 

Image 24 8.85 0.70 0.86 0.57 25.29 

Image 25 1.44 9.83 5.01 7.73 8.44 

Image 26 6.6 2.20 3.24 1.69 11.50 

Image 27 7.35 0.99 4.82 0.55 13.42 

Image 28 6.29 0.38 5.84 1.89 10.86 

Image 29 10.01 0.59 1.88 0.41 6.53 

Image 30 1.89 0.67 2.17 0.17 1.80 

 

Table 5 Average MSE of each method 

 IRHT i-IRHT Proposed method 

Average 7.997 4.721 3.853 

 

4. Conclusion 

To achieve robust and accurate detection of fetal heads 

in US images, this paper has proposed a method that 

integrates an improved IRHT with a voting scheme. The 

proposed method votes the ellipse estimation result obtained 

by the improved IRHT to the parameter space and obtains 

the final detection result by finding the peak in the parameter 

space. 

Experiments for comparing the proposed method with 

IRHT and improved IRHT using 30 US images demonstrate 

the effectiveness of the proposed method as follows. 

 The proposed method can achieve much higher 

average detection rate (94.97%) and smaller standard 

deviation (8.82%). 

 Larger numbers of fetal skull pixels on the detected 

ellipses are obtained by the proposed method than 

i-IRHT and IRHT. 

 Ellipse detection rates for different loop numbers (P) 

of this method are explored. It turns out that 100 is the 

optimal value of P for the best detection rate. 

 MSE for the five ellipse parameters obtained by the 

propose method are evaluated. The MSEs are 

reasonably small, but the ellipse rotation � and the 

major axis a need further improvement. 

Remaining issues include further improvement of the 

ellipse detection accuracy and efficiency by optimizing 

parameters used by the algorithm. 
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