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<Summary> Periodic spine screening in teenagers is important for early detection of adolescent idiopathic scoliosis, a 

deformity characterized by an abnormal spinal curve and vertebral rotation. Conventional methods for measuring vertebral 

rotation involve exposure to radiation and can be complicated by challenges inherent to manual identification of spinal 

features. We propose a method for automatic measurement of vertebral rotation using a nonradiation method that is easy to 

administer and is not associated with risk. To measure the angle of vertebral rotation from a Moire image, which is 

nonradiation method, convolutional neural network is applied to estimate the spinal position. In addition, to measure the 

angle from the spinal position in the transverse plane, we generate a spinal model of a teenager to obtain spinal dimensions 

in the transverse plane. The angle of vertebral rotation method is valid, having high correlation with method using computed 

tomography. The angle of vertebral rotation is meaningful for pathological diagnosis of adolescent idiopathic scoliosis. 
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1. Introduction 

Teenagers in an active growth stage require periodic 

spinal checkups for the early detection of adolescent 

idiopathic scoliosis (AIS), a structural scoliosis. This is 

because the curve of spine can progress rapidly during the 

growth stage, potentially becoming a serious disease. In 

addition, monitoring of curve progression is recommended for 

teens with mild AIS1).   

Structural scoliosis involves abnormal curvature and 

vertebral rotation (VR) of the spine and is caused by unknown 

factors. By contrast, a nonstructural scoliosis involves only 

spinal curvature and is a reversible condition caused by 

muscle spasms or differences in leg length. AIS is a structural 

scoliosis commonly diagnosed by measurement of the Cobb 

angle, an angle of abnormal spinal curvature2). The Cobb 

angle is measured off the two-dimensional (2D) plane of a 

radiograph. Because it is difficult to measure VR 

radiographically, there exists no gold standard method for 

measuring VR.  

Recently, methods for measuring VR have been reported3), 

4). These methods were developed using imaging technologies 

and are based on an understanding of AIS as a three-

dimensional (3D) deformity. VR can serve to diagnose AIS as 

well as track spinal curve progression. Thus, VR is an 

indispensable means of diagnosing a pathological spinal 

condition5). Current reported methods such as radiography 

and computed tomography (CT) involve exposure to 

radiation5), 6). Consequently, these methods are not feasible for 

use as screening and monitoring tools for patients with AIS.  

Therefore, nonradiation methods for screening have been 

studied and developed. Unfortunately, mainly nonradiation 

methods measure surface metrics and not VR. These 

nonradiation methods are noninvasive and use optical 

measures of spinal curvature. These surface metrics generate 

other observations, such as imbalances of the trunk7)-10). 

Treatment progress is evaluated based on the surface metrics 

of clinical deformity. However, these surface metrics are 

different from methods used in hospitals and have very little 

correlation to the Cobb angle6). Back-surface curvature is a 

good descriptor of spinal shape, but this measure cannot 

explain the spinal condition, considering the structure of the 

spine itself.   

Therefore, a screening method is needed that considers the 

spinal structure based on the surface of the back, does not 

involve radiation, and provides a pathological diagnosis by 

measuring VR. Given these needs, we propose a method for 

estimating spinal shape that measures VR based on surface 
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information. Furthermore, this method is designed to be 

automatic and not need any human interference.   

As the back surface information, we use a Moire image 

which is broadly used in Japan and China (Hong Kong) for 

the early detection of AIS11). We chose it due to the 

accumulated data by long period of use. This is an optical 

method as well as a surface descriptor like a contour line. 

About the evaluation indices of Moire method, description is 

in section 2. To estimate the spinal position from the Moire 

image, a convolutional neural network (CNN) is used. For the 

estimation of it using CNN, a dataset generation and CNN 

architecture are described in section 3. VR is an angle in the 

transverse plane (x, z) whereas the estimated spinal position is 

2D (x, y) coordination. Accordingly, to measure the VR based 

on the estimated positions, we generate a general spinal model 

of teenagers to obtain the spinal dimensions to use instead of 

z coordination. A method measuring VR and the generation of 

general spinal model are explained in section 4. The validation 

of the method measuring VR and the result of estimation by 

CNN are described in section 5.      

2. Related Methods and Their Evaluation Indices  

Radiation methods used to diagnose AIS include 

radiography and CT; nonradiation methods use ultrasound, 

equipment, Moire, or smartphones.   

The radiograph is the most commonly used 2D method 

for measuring the Cobb angle. On the radiographic image, the 

Cobb angle is obtained from the two most tilted vertebrae at 

both ends of one curve12). Many methods exist to measure VR. 

The Perdriolle method is considered the most accurate and 

simplest to use and is based on the position of the pedicle and 

vertebral body, using a torsionmeter as in Fig. 1 (a)5), 6). 

Because these are manual measurements, observer errors exist. 

The observer error for the Cobb angle ranges from 3° to 10°. 

Furthermore, it is difficult to measure VR on radiographic 

images of poor clarity where feature identification is 

challenging5), 6).  

CT is a 3D method that reconstructs the spine using 

imaging techniques. From the 3D spine, the Cobb angle is 

measured on the coronal plane in a manner identical to how it 

is measured on a radiograph. According to the Ho method of 

measuring the VR on the CT, the most reliable and clinically 

useful method involves measuring the VR based on the 

vertical line and the bisecting line of the two lines connecting 

three features on the inner surface of the junction, as in Fig. 

1(b). VR measurement is difficult because it requires 

identification of the apex of the vertebra from a 3D shape5), 6). 

  

 

 

 

 

 

 

      (a)              (b)             (c) 

Fig. 1  Methods for measuring VR; (a) radiography, (b) CT, 

and  (c) ultrasound 

   Ultrasound does not involve radiation and is a 3D method 

that is easy to access in hospital settings. Instead of the Cobb 

angle, ultrasound measures the spinous process angle (SPA), 

which is highly correlated to the Cobb angle and uses the tips 

of the spinous process. The VR is an angle between the 

reference horizontal line and the line connecting the two 

laminae, as shown in Fig. 1 (c). The lamina and the spinous 

process were identified manually on ultrasound images13), 14).  

   Other nonradiation and optical methods exist, including 

the integrated shape imaging system, raster stereo-

photography, the quantec shape imaging system, and the 

formetric 3D. After attaching markers on anatomical 

landmarks, these techniques measure the back surface using 

the optical technology, producing descriptions of scoliosis 

based on surface matrices, such as shoulder, scapulae, and 

waist asymmetries, surface rotation, or trunk inclination on 

three planes: coronal, transverse, and sagittal7), 8), 15). As we 

mentioned, surface metrics differ from indices such as the 

Cobb angle. For additional detail on these indices, please refer 

to Reference 7).  

   The Moire method is an optical method that describes the 

curvature and depth of the back surface, like a contour line. 

Using the Moire image, the spine can be classified as either 

normal or abnormal by manual scoring of the symmetry level 

by checking for equal depth. The Moire image shows the 

shape of the back but can be somewhat ambiguous in its 

interpretation. Notwithstanding, the Moire method is a 

costeffective and simple screening method7)-10).   

   Kinect is a method that uses an RGB-D sensor for 

automatically estimating anatomical landmarks and spinal 

curve. This automated method for estimating landmarks 

replaces manual marking required during the use of optical 

methods16). Kinect shows promise as a screening system that 

uses sensors instead of optical technology.  

   Additional smartphone applications17) that use a built-in 

gyro sensor, scoliometer, and scolioscreen exist. Such 

applications are easily accessed, requiring only downloading  

 



 

 

 

 

 

 

 

 

 

 

 Spinous process     Vertebral body     Neck    Waist 

Fig. 2  Dataset generated by merging the Moire image and  

    spinal positions on radiography 

of their application. Moreover, they are easy to operate, 

requiring the user to only drag the phone (supported by the 

thumbs) along the spinal curve. These applications can 

measure the angle of trunk rotation (ATR) in the Adams test 

position, similar to a scoliometer, which is a small tool for 

measuring ATR. This method does not require specific 

training; however, its accuracy is low because the ATR can 

be measured differently depending on the position of the 

thumbs or the phone.       

   We compared various spinal screening/diagnosis methods 

and evaluated the associated indices. Researches of measuring 

VR were reported only using radiation method and ultrasound 

method. The radiation-based methods are highly accurate but 

are associated with a high risk of radiation exposure. 

Nonradiation methods carry no risk of radiation, but they 

evaluate the spine using indices that cannot diagnose 

pathology and often require manual marking or identification 

of features. 

3. Dataset and Spinal Estimation 

3.1 Dataset: Moire image and radiography  

CNN used to estimate spinal positions from topography 

information called Moire. CNN is a technology for analyzing 

visual imagery and is used for detection or estimation in 

various fields18), 19). To estimate the spine shape using CNN, 

a dataset is required that include Moire image with spine 

shape for training. 

We collected 1965 pairs of Moire and radiographic images 

taken under different environments during the screening in 

their school and the diagnosis in the hospital respectively. 

Thus, a pose of subject was same standing upright in two 

images, but the poses were not exactly same because the 

images were taken in different time. We collected the data 

through Tokyo Health Service Association and the data was 

approved by the IRB. These data were obtained from 

 

 

 

 

 

 

  (a) Coronal plan        (b) Transverse plane 

     Fig.3  Feature points in Coronal plane and Transverse plane 

teenagers, aged 11–16 years, with Cobb angles ranging from 

0° to 55°. 

Because the Moire image includes back-surface 

information and the radiographic images include spinal 

information from the same subjects, we merged them into one dataset 

based on a silhouette and the points of neck and pelvis, as in Fig. 2. 

However, even if poses are exactly same, the body silhouettes of 

subject on two images were slightly different by the different view 

point between cameras. To minimize the difference, perspective 

projection was applied to merge two images. The mergence using the 

perspective projection was reported as a method has better estimation 

result by CNN than a mergence using translation and scaling. The 

mean absolute error (MAE) of spinal curve for each dataset was 4.3° 

for the dataset using perspective projection, and 4.7° for the dataset 

using translation and scaling20). It means that the dataset merged by 

the perspective projection has higher accuracy because the estimation 

result will be better if the accuracy of dataset is higher. We used a 

dataset that was nearly identical to the dataset20), but the dataset we 

used contained additional spinal feature, spinous process.      

  To verify the reproducibility of the dataset, one examiner 

merged 10 data twice on different days. The MAE of distance 

was small at 3.9±2.6 pixels. Therefore, a dataset which is 

similar to our dataset can be generated by others as well.   

This spinal information comprised two features: a center of 

vertebral body and a tip of spinous process on one vertebra, as 

well as 12 thoracic (1T-12T) and 5 lumbar (1L-5L) vertebrae. 

We chose two features that are easily recognizable in 

radiographic image. In addition, the spinous process is a bone 

protruding from the vertebral body and is located the closest 

to the back surface, which is recognizable at back surface.    

On the radiographic image, as shown in Fig. 3 (a), the 

center of vertebral body is a gravity center point of four 

corners of vertebral body, and the tip of spinous process is the 

end point on a shape of spinous process. We divided the 

dataset into 200 data series for the test dataset and 1765 for 

the training dataset. The test dataset comprised 66 normal data 

series (Cobb angle < 10°), 70 data series with mild deformities 

(10° ≤ Cobb angle < 20°), and 64 data series with severe 

deformities (20° ≤ Cobb angle). To avoid overfitting problem 



 

 

during the training, the training dataset augmented to 36652 

by rotation (5° clockwise and anti- clockwise) and mirroring. 

the end point on a shape of spinous process. We divided the 

dataset into 200 data series for the test dataset and 1765 for 

the end point on a shape of spinous process. We divided the 

dataset into 200 data series for the test dataset and 1765 for 

the training dataset. The test dataset comprised 66 normal data 

series (Cobb angle < 10°), 70 data series with mild deformities 

(10° ≤ Cobb angle < 20°), and 64 data series with severe 

deformities (20° ≤ Cobb angle). To avoid overfitting problem 

during the training, the training dataset augmented to 36652 

by rotation (5° clockwise and anti- clockwise) and mirroring. 

3.2 Estimation of spine 

We used AlexNet, which is a network architecture 

comprising five convolutional layers and two fully connected 

layers18), 19). The architecture of the CNN is based on 

reference18). The AlexNet is a relatively shallower network 

than other recent networks. We chose it because the mean 

absolute error (MAE) was the smallest. When we tested using 

same dataset described in section 3.1, the MAE of each 

network was 3.89 ± 1.98 pixels for AlexNet, 4.46 ± 2.8 pixels 

for VGGNet1621), and 4.1 ± 2.5 pixels for ResNet15222). 

Deeper networks with more layers have more parameters that 

need to be optimized during the training. It requires bigger 

dataset for the difficult optimization22). For this reason, it is 

assumed that the shallower network was effective at our small 

dataset rather than the deeper networks.  

In CNN, the input was the Moire image and the output 

were 34 spinal positions of two features, a tips of spinous 

process and a center of vertebral body as shown in Fig. 4. 

These two kinds of feature were estimated using one network 

because they have a related structure. Before the Moire image 

was input into the CNN, the image was processed, the 

histogram was equalized to adjust the contrast, and a Fourier 

transformation was completed to remove noise. Appalment of 

Fourier transformation prevented the noise generated by 

rotating of Moire image for the data augmentation. The 

Fourier transformation removed low frequencies by masking 

using a 100 ×100 rectangular window.  

   Afterward, the Moire image (640 × 480) was cropped 

based on spinal positions and then suitably resized for input 

(220 × 220) into the network.   

 

4. Measurement of Vertebral Rotation 

The vertebral rotation means a rotation in the vertebral 

axis. In this study, the angle of vertebral rotation (AVR, θ) is  

 

 

 

 

 

 

 

Fig. 4  Architecture of CNN 

 

 

 

 

 

 

 

 

(a)                              (b) 

Fig. 5  Transverse plane and coronal plan; (a) VR on the 
transverse plane which is the ground truth, (b) The 
proposed method for measuring AVR on the transverse 
plane using positions on the coronal plane 

 

the angle formed by a vertical line and the line connecting the 

center of vertebral body and the tip of spinous process, on the 

transverse plane as shown in Fig. 5 (a) where blue is the tip of 

the spinous process and orange is the center of the vertebral 

body. The vertical line was referenced from the coordinate on 

the data like Moire image or CT data.  

We aimed at the AVR measurement from the estimated 

positions on the Moire image by CNN. However, the 

estimated positions included 2D (x, y) data in the coronal 

plane and no (z) depth, which was a necessary value for 

calculating AVR in the transverse plane. A general spinal 

dimension model is useful for referencing the distance 

between the center of vertebral body and the tip of spinous 

process. Thus, AVR was calculable using the length (L) 

obtained from the spinal model, which is measured using a 

trigonometric function as shown in Fig. 5 (b).   

   Since there exist no data pertaining to spinal dimensions 

in growing teenagers, we generated a general length model of 

spinal dimensions by annotating the features from CT data. 

The CT data were obtained from 20 teenagers (19 females, 

and 1 male) with severe AIS. The mean age of the teenagers 

was 15 years (range:11- 19 years), weight was 44.2 kg (range: 

33-56 kg), and height was 158 cm (range: 151.2-170.7 cm). 

The annotated data consisted of the center of the vertebral 

body and the tip of the spinous process.  

On the CT image, the center of vertebral body was a 

gravity center point of four corners of vertebral body in both 



 

 

planes, coronal and sagittal, and the tip of spinous process was 

the end point on a shape of spinous process in transvers plane 

 (Fig. 3 (b)).       

 

 

Fig. 6  Spinal dimension of each vertebra based on the 

generated model 

 

Fig. 7  Correlation between the proposed method and 3D AVR 

method 

Table 1  MAEs of the proposed method and the ultrasound 

method 

Range MAE of proposed 
method 

MAE of 
ultrasound13)

All 0.49° ± 0.81° - 

 |AVR|<5° 0.11°±0.14° 0.3° ± 0.3° 

5 ≤ |AVR| <10° 0.38°±0.46° 0.5° ± 0.3° 

10≤|AVR|<15° 0.51°±°0.63° 1.0° ± 1.1° 

15≤|AVR|      1.76°±1.7° - 

 

 
Fig. 8  MAE and average |AVR| of each vertebral level 

   These data were normalized by dividing by the spinal 

length based on assumption that was made to establish the 

general model of spinal dimension (see Fig. 6). The 

assumption is that the length between the center of vertebra 

and the tip of spinous process is a function of spinal level and 

of spinal length15). Figure 6 shows the spinal dimensions in 

ratio, which is the length, corresponding to each vertebral 

level. 

   The length (L) indicates a length when the spinal length is 

1; therefore, L was applied after conversion to an actual length 

multiplied by the spinal length. The spinal length was a length 

between two centers of vertebral bodies of T1 and L5. 

   AVR was calculated by sin���∆�/	
,  and the 

programmed result was negative when the vertebra was 

twisted clockwise and positive when twisted counter-

clockwise.  

5. Experimental Results 

5.1 Validation of AVR method 

We compared our result to the ground truth. The ground 

truth was obtained by trigonometric function on feature points 

which were annotated from CT data by manually, as shown 

in Fig. 5 (a). The used dataset consisted of 6 females with 

severe AIS, aged 10-15, and mean height of dataset was 156 

cm. The collected features were the tip of spinous process and 

the center of vertebral body. Our result was obtained by the 

proposed method based on the same data with the ground truth. 

The MAE for the entire vertebrae (n = 102, 6×17) was 0.49° 

± 0.81°. The Pearson correlation coefficient (r) of entire 

vertebrae was very high at 0.996 (p < 0.05) and Fig. 7 shows 

the graph. The MAE of each AVR range, categorized by the 

angle obtained by the ground truth, were 0.11° ± 0.14°, 0.38° 

± 0.46°, 0.51° ± 0.63° and 1.76° ± 1.7° for absolute AVR of 

0.0°~5.0°, 5.0°~10.0°, 10.0°~15.0° and >15.0° respectively, 

as shown in Table 1.  

In addition, the MAE of ultrasound was reported that each 

MAE for absolute AVR of 0.0° ~ 5.0°, 5.0°~10.0° and 

10.0°~15.0° were 0.3° ± 0.3°, 0.5° ± 0.3° and 1.0° ± 1.1° 

respectively, as shown in Table 1. The ultrasound method 

measured the AVR as an angle between the reference 

horizontal line and the line connecting the two laminae, as 

shown in Fig. 1 (c). The ground truth was measured using 

MRI13). In comparison with the MAE of ultrasound, the MAE 

of proposed method was smaller value in all absolute AVR 

ranges. 

MAE and average absolute AVR of each vertebral level are 

shown in Fig. 8. In Fig.8, The average |AVR| is an average of 

two absolute values, which are the ground truth and the AVR 



 

 

obtained by the proposed method. The vertebrae near neck 

(T1), pelvis (L5) and the part connected thoracic and lumbar 

vertebrae (T11 and T12), had smaller average absolute AVR, 

which means that deformity in the vertebra is small. This is 

inferred to be related to the usual shape of abnormal curve, 

which is C or S shaped and curved between two end vertebrae. 

Therefore, a vertebra such as T7, has high possibility to be 

located between the end vertebrae and vertebrae such as T1, 

T11 and L5 have high possibility to be the end vertebra.   

Resultingly, both results in Table 1 and Fig.8 show that 

when absolute AVR is large, the MAE is large as well. 

The Bland-Altman method was applied to access the 

agreement between the proposed method and the ground truth. 

Through the Bland-Altman, the difference between two 

methods can be analyzed23). The average of the difference 

(bias) was 0.2 and, the 95 % limits of agreement were 1.72 

and 1.98. The Bland-Altman plot is shown in Fig.9.  

Accordingly, our method is valid, having high correlation 

coefficient and small MAE with the ground truth. In addition, 

on analyzing the difference, MAE was larger when AVR was 

large. 

 

 

 

 

 

 

 

 

 

 

Fig. 9  Bland-Altman Plot 

 

 

 

 

 

 

 

 

 

 

 

5.2 Estimation result and evaluation 

   CNN estimated the spine positions from the 200 Moire 

images in the test dataset. The ground truth was feature points 

on the Moire image. Both AVRs of the ground truth and the 

estimation result were obtained by the proposed AVR method.   

Figure 10 shows the spine and VR curves based on the 

ground truth and estimation result. On the center of back, the 

black line shows the spinal curve connecting the vertebral 

center, and the white line connects the spinous process and 

vertebral center on the same vertebral level. The orange line 

is the VR curve, indicating AVR calculated by the proposed 

method. The curve shapes on the ground truth and estimation 

result have similar curvature. Between the ground truth and 

the estimation result (n = 200×34), the MAE of distance was 

3.89 ± 1.98 pixels (6.8 ± 3.6 mm) in the Moire image.   

In addition, using a method measuring Cobb angle (CA 

method), we evaluated the couverture of spinal curve, which 

is consisting of the center of vertebral body (n = 200). The CA 

method was reported that has MAE of 2.7° 20). Cobb angles 

were measured based on the 17 centers of vertebral body, 

estimation result, and the maximum Cobb angle on the one 

spine compared with the Cobb angle measured on 

radiographic image by doctors. It is because doctors diagnose 

as AIS using the largest Cobb angle. The MAE were 

3.21°±2.2° for normal (Cobb angle < 10°), 4.7°±2.8° for mild 

deformity (10° ≤ Cobb angle < 20°), 7.3°±4.7° for severe 

deformity (20° ≤ Cobb angle < 30°) and 10.6°± 5.0° for severe 

deformity (30° ≤ Cobb angle ≤ 45°), as shown in Table 2. 

Spine estimation had low accuracy when the deformity was 

severe.   

   Using the proposed AVR method, we measured AVRs on 

the ground truth and estimation result (n = 200×17). MAE of 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10  Ground truth and estimation results



 

 

Table 2  MAD of Cobb angle and MAD of absolute AVR between 

the estimation positions and the ground truth  

Cobb angle MAD AVR MAD 

All 6.0° ± 2.4° All 2.9° ± 1.4°. 

Cobb angle < 

10° 
3.21°±2.2° | AVR| < 5° 2.0° ± 1.8°, 

10° ≤ Cobb 

angle < 20° 
4.7°±2.8° 

5° ≤ | AVR| < 

10° 
4.3° ± 2.5° 

20° ≤ Cobb 

angle < 30° 
7.3°±4.7° 

10° ≤ | AVR| < 

15° 
6.5° ± 3.2° 

30° ≤ Cobb 

angle ≤ 45° 
10.6°± 5.0° 15° ≤ |AVR| 12.7° ± 5.9° 

 

 

Fig. 11  MAD and average |AVR| of each vertebral level 

AVR was 2.9° ± 1.4°. Each MAE for absolute AVR of 0 ~ 5°, 

5° ~ 10°, 10° ~ 15°, and larger than 15°, were 2.0° ± 1.8°, 4.3° 

± 2.5°, 6.5° ± 3.2° and 12.7° ± 5.9° respectively. Figure 11 

shows the MAE of AVR for each vertebral level. The MAE 

of AVR was larger when the deformity was severer, on the 

other hand, MAE was not large when average absolute AVR 

was large.  

Consequently, on analyzing of the estimation result, Moire 

images with small deformity has more accurate result than 

Moire image with large deformity. The screening of AIS is 

targeted at classification into normal or mild eformity because 

severe deformity is recognizable in visually. Therefore, the 

proposed method measuring AVR on Moire image is able to 

support the screening of AIS.  

6. Conclusion 

   We proposed a novel method for estimating spinal 

positions from a Moire image and measuring AVR, a crucial 

measure for diagnosing AIS.   

An advantage of the proposed method is that the AVR is 

automatically measured only using the Moire image. This 

holds a considerable benefit considering the difficulties 

associated with measuring AVR by identifying spinal features. 

In this respect, our method is considerably different than the 

conventional method.  

Although our nonradiation method used Moire images, 

we were able to diagnose the pathological condition in a 

manner similar to methods that use radiation. Consequently, 

our method is cost-effective and reduces the need for using 

radiation during screening. Screens that use nonradiation 

methods seek to classify those suspected of demonstrating 

AIS in order to refer these individuals to a hospital for 

additional diagnosis and treatment, if indicated. Historically, 

these methods identify many normal students because the 

classification scheme was based on surface metrics. Use of 

our method reduces the number of individuals suspected of 

demonstrating AIS by classification subdivision. Furthermore, 

our method is appropriate for monitoring by supplying the 

diagnostic index.  

As a result, we suppled AVR angles. However, we cannot 

supply assessment results (normal or AIS). It is because the 

standard of AVR is not established yet. Accordingly, there is 

no clear AVR criteria for diagnosing AIS. Our results can be 

useful for establishing a VR standard and criteria for AVR. 
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